N°331 page 81

IMPORTANT: A savoir en préambule

L'acide Chlorhydrique est un solide ionique de formule brute $HCl_{(s)}$. En solution aqueuse, l'acide Chlorhydrique réagie totalement avec l'eau selon la réaction :

$$HCl_{(s)} + H_2O_{(l)} \rightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$$

 \Rightarrow Une solution aqueuse d'acide Chlorhydrique est donc constituée d'ions $H_3O^+_{(ag)}$ et $Cl^-_{(ag)}$.

L'hydroxyde de sodium est également un solide ionique de formule brute $NaOH_{(s)}$. En solution aqueuse, il se dissocie totalement selon la réaction :

$$NaOH_{(s)} \rightarrow Na^+_{(aq)} + HO^-_{(aq)}$$

- \Rightarrow Une solution aqueuse d'hydroxyde de sodium (appelée également de la « soude ») est donc constituée d'ions $Na^+_{(ag)}$ et $Ho^-_{(ag)}$.
 - 1. Les couples acide base mise en jeu lors du titrage sont donc :

$$H_3 O_{(aq)}^+ / H_2 O_{(l)}$$
 et $H_2 O_{(l)} / H O_{(aq)}^-$

- \Rightarrow La réaction support du titrage s'écrit donc : $H_3O^+_{(aq)} + HO^-_{(aq)} \rightarrow 2.H_2O_{(l)}$
 - 2. Par lecture graphique, on trouve $V_E = 11, 2 mL$
 - 3. a- D'après les coefficients stœchiométriques de la réaction support du titrage, l'expression s'écrit :

$$\frac{C_1 \times V_1}{1} = \frac{C_B \times V_E}{1}$$

b- D'après la relation précédente, il vient que :

$$C_1 = \frac{c_B \times V_E}{V_1}$$

$$C_1 = 1.12 \times 10^{-2} \ mol. L^{-1}$$

4. L'énoncé nous indique que la solution S_0 a été diluée d'un facteur de dilution F = 1000.

Par suite,

$$C_0 = F \times C_1$$

 $C_0 = 11,2 \, mol. \, L^{-1}$

5. La transformation totale de l'acide Chlorhydrique dans l'eau s'écrit :

$$HCl_{(s)} + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + Cl_{(aq)}^-$$

Par suite, en notant \mathcal{C}_{ac} la concentration molaire en acide Chlorhydrique apportée.

$$C_{ac} = C_0$$

Notons alors M(HCl) la masse molaire d'acide Chlorhydrique.

$$M(HCI) = M(CI) + M(H)$$

$$M(HCI) = 36.5 \text{ g.mol}^{-1}$$

Et donc la masse de d'acide Chlorhydrique dissout dans un volume $V_{sol} = 1 L$ de solution s'écrit :

$$m_0 = C_{ac} \times M(HCl) \times V_{sol}$$

 $m_0 = 409 g$

6. Notons ρ_{ac} la masse volumique de la solution acide Chlorhydrique.

$$\rho_{ac} = d \times \rho_{eau}$$

Par suite, la masse d'un litre de la solution S_0 s'écrit :

$$m = d \times \rho_{eau} \times V_{sol}$$
 Avec $\rho_{eau} = 1000 \ g. L^{-1}$
 $m = 1160 \ g$

7. a- Notons t_{ac} le titre massique de la solution S_0

$$t_0 = \frac{m_0}{m} \times 100$$

$$t_0 = 35,3 \%$$

b- D'après l'énoncé, nous pouvons constater que le titre massique de la solution est supérieur au 33 % minimum.

L'indication de l'étiquette est bien correcte.

8. Par lecture graphique, on trouve approximativement le même volume à l'équivalence.

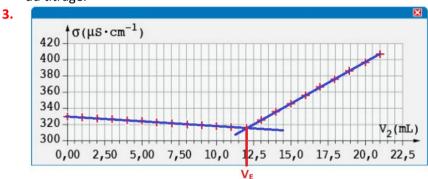
Pour cela la méthode employée s'effectue en 4 temps.

- Tracer une tangente à la courbe en un point situé avant le saut de pH.
- Tracer une deuxième tangente, parallèle à la première, en un autre point situé cette fois ci-après le saut de pH.
- Tracer ensuite une droite équidistance et parallèle aux deux tangentes.
- Le volume à l'équivalence est alors l'abscisse du point d'intersection entre la dernière droite et la courbe.

N°33 page 82

Partie 1

- 1. La conductivité initiale de la solution S est due à la présence des ions chlorure en solution (ainsi que nécessairement d'un cation non indiqué dans l'énoncé).
- 2. Au cours du dosage, il est possible de construire le tableau de variation suivant :


Concentration	Avant l'équivalence	Après l'équivalence
des :		
Ion Chlorure ($Cl_{(aq)}^-$)	Diminue	Est nulle
(**1)	(consommée par les ions argent)	(réactif limitant du titrage)
Ion nitrate ($NO_{3(aq)}^{-}$)	Augmente	Augmente
	(introduit au cours du titrage)	(introduit au cours du titrage)
Ion argent $(Ag_{(aq)}^+)$	Est nulle	Augmente
(64)	(réactif limitant du titrage)	(réactif en excès du titrage)

• <u>Avant l'équivalen</u>ce

Les données m'indiquent que : $\lambda_{Cl^-(aq)} > \lambda_{NO_3^-(aq)}$

- ⇒ La conductivité de la solution diminue légèrement au cours du titrage.
 - Après l'équivalence

Les concentrations des ions augmentent, la conductivité de la solution augmente donc également au cours du titrage.

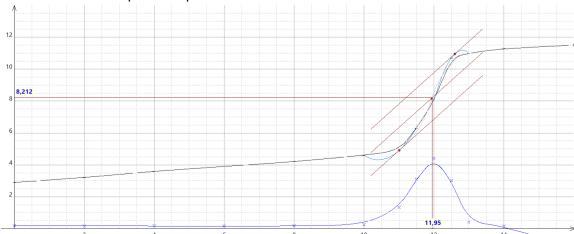
- ⇒ Par lecture graphique : V_E = 12,0 mL
- 4. D'après l'équation de la réaction support du titrage, à l'équivalence, nous pouvons écrire :

$$n_i(Cl_{(aq)}^-) = n_E(Ag_{(aq)}^+)$$

5. Par suite,

$$C_1.V_1 = C_2.V_E$$

$$\Rightarrow$$
 $C_1 = \frac{C_2.V_1}{V_2}$


$$\Rightarrow$$
 C₁ = 6,00 x 10⁻³ mol.L⁻¹

Partie 2

6. a- L'équation support du titrage s'écrit :

$$AH_{(aq)} + HO_{(aq)}^{-} \rightarrow A_{(aq)}^{-} + H_2O_{(I)}$$

- b- La réaction doit être totale, unique et rapide.
- 7. a- Traçons la courbe du suivi pH-métrique :

⇒ Par lecture graphique, à l'aide de la méthode des tangentes, on trouve : V_E = 12,0 mL.

b- Notons n_A la quantité d'acide lactique présent dans le volume V_A.

D'après la réaction support du titrage :

$$n_A = C_B \cdot V_E$$

$$\Rightarrow$$
 n_A = 6,00 x 10⁻⁴ mol

8. Notons m la masse d'acide lactique présent dans 1 L de lait.

$$\Rightarrow$$
 m = C_m(acide lactique).V

$$\Rightarrow$$
 = C_A.M(AH).V

Avec
$$C_A = \frac{n_A}{V_A}$$

$$\Rightarrow$$
 m = $\frac{n_A}{V_A}$.M(AH).V

$$\Rightarrow m = \frac{n_A}{V_A}.M(AH).V$$

$$\Rightarrow m = 2.7 \text{ g} > 1.8 \text{ g} \qquad \text{Le lait n'est pas frais.}$$

9.
$$U_m = m. \sqrt{\left(\frac{U_{V_A}}{V_A}\right)^2 + \left(\frac{U_{V_E}}{V_E}\right)^2 + \left(\frac{U_{C_B}}{C_B}\right)^2} = 0.6 \text{ g}$$

N°36 page 83

- 1. L'un des produits de la fermentation de l'acide lactique est le dihydrogène formé à l'état de gazeux. Ainsi le dihydrogène formé au cœur du fromage, ne pouvant pas s'échapper, va entrainer un gonflement de ce dernier.
- 2. La réaction support du titrage s'écrit : $C_4H_8O_{2(aq)} + HO_{(aq)}^- \rightarrow C_4H_7O_{2(aq)}^- + H_2O_{(l)}$
- 3. a-L'équivalence du titrage est l'instant où les réactifs titrant et titré sont introduits en proportion stœchiométriques.
 - b- Le volume à l'équivalence, lors d'un titrage conductimétrique, est repérable lors de la rupture de la pente de la courbe de la conductivité mesurée en fonction du volume d'espèce chimique titrante versé.
 - c- Par lecture graphique, le volume à l'équivalence vaut : $V_E = 6,4 \ mL$

Problème à résoudre

Notons n_{ab} la quantité d'acide butanoïque présent dans 8 g de beurre titré. D'après la réaction support du titrage, il vient que :

$$\frac{n_{ab}}{1} = \frac{C \times V_E}{1}$$
 Avec $V_E = 6.4 \times 10^{-3} L$

$$\frac{n_{ab}}{1} = \frac{c \times V_E}{1}$$

$$\Rightarrow n_{ab} = 2.6 \times 10^{-3} \text{ mol}$$

Notons ensuite m_{ab} la masse d'acide butanoïque présent dans 8 g de beurre titré.

$$m_{ab} = M(C_4 H_8 O_2) \times n_{ab}$$

$$\Rightarrow m_{ab} = 0.23 g$$

Notons enfin P(ab) le pourcentage massique de d'acide butano $\ddot{}$ que dans le beurre.

$$P(ab) = \frac{m_{ab}}{m} \times 100 \qquad \text{Avec } m = 8.0 \ g$$

- \Rightarrow P(ab) = 2.8 % < 4 %
- ⇒ Le beurre n'est pas rance.

N°37 page 84

1. a- Notons N_c le nombre de canette de soda correspondant à la dose journalière admissible de caféine pour une personne adulte.

L'énoncé nous indique que la masse d'une personne adulte est de m=70~kg. Notons alors m_c la masse de caféine ingérable par jour pour un adulte.

$$m_c = DJA_c \times m$$

Avec
$$DJA_c = 5 mg.kg^{-1}$$

$$\Rightarrow m_c = 350 \, mg$$

Par suite, l'énoncé nous indique qu'une canette contient environ $m_{canette}=35\ mg$ de caféine.

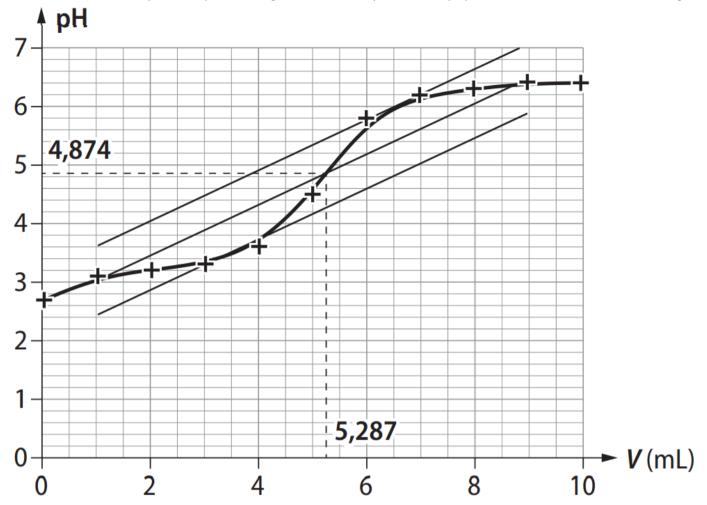
$$N_c = \frac{m_c}{m_{canette}}$$

- $\Rightarrow N_c = 10 \ can ettes$
- **b-** Notons $\mathcal{C}(caf)$ la concentration en caféine du soda choisi.

$$C(caf) = \frac{Cm(caf)}{M}$$

Avec Cm(caf): la concentration massique en caféine du soda

$$Cm(caf) = \frac{m_{canette}}{V_{canette}}$$
 Avec $V_{canette} = 33 \times 10^{-2} L$


$$\Rightarrow C(caf) = \frac{m_{canette}}{M \times V_{canette}}$$
 Avec $m_{canette} = 35 \times 10^{-3} g$

$$\Rightarrow C(caf) = 5.5 \times 10^{-4} mol. L^{-1}$$

$$\Rightarrow C(caf) = 5.5 \times 10^{-4} \, mol. \, L^{-1}$$

2. La réaction support du titrage s'écrit : $H_3PO_{4(aq)} + HO_{(aq)}^- \rightarrow H_2PO_{4(aq)}^- + H_2O_{(l)}$

Problème à résoudre

• A l'aide du suivie pH métrique du titrage, il est dans un premier temps possible de tracer la courbe du titrage.

- \Rightarrow A l'aide de la méthode des tangentes, on lit le volume à l'équivalence : $V_E = 5,3 \ mL$
- Notons ensuite C_p la concentration en acide phosphorique de la canette de soda. D'après la réaction support du titrage, il vient que :

$$\frac{C_p \times V}{1} = \frac{c \times V_E}{1}$$

$$\Rightarrow C_p = \frac{c \times V_E}{V}$$

$$\Rightarrow C_p = 5.3 \times 10^{-3} \ mol. L^{-1}$$

- Notons ensuite m_p la masse d'acide phosphorique contenue dans une canette.
 - $\Rightarrow m_p = C_p \times M(H_3PO_4) \times V_{canette}$ $\Rightarrow m_p = C_p \times [3.M(H) + M(P) + 4.M(O)] \times V_{canette}$ $\Rightarrow m_p = 0.17 g$
- ullet Notons alors m_{phos} la masse d'acide phosphorique ingérable par jour pour un adulte.

$$m_{phos} = DJA_p \times m$$
 Avec $DJA_p = 70~mg.\,kg^{-1}$ $\Rightarrow m_{phos} = 4.9~g$

Notons enfin $N_p\,$ le nombre de canette de soda correspondant à la dose journalière admissible d'acide phosphorique pour une personne adulte.

$$N_p = \frac{m_{phos}}{m_p}$$
 $\Rightarrow N_p = 28 \ canettes$

N°38 page 85

1. Notons ρ la masse volumique du vinaigre utilisée.

$$\Rightarrow$$
 $\rho = d.\rho_{eau}$

Avec
$$\rho_{eau}$$
 = 1,0 kg.L⁻¹

- \Rightarrow $\rho = 1.0 \text{ kg.L}^{-1}$
- 2. L'énoncé m'indique qu'il est nécessaire de disposer d'un volume V_A = 10,0 mL de vinaigre dilué dix fois.
 - \Rightarrow Réalisons alors une solution d'un volume $V_f = 50,0$ mL de vinaigre dix fois.

Notons V_m le volume de la solution mère de vinaigre à prélever.

$$\Rightarrow$$
 $V_m = \frac{V_f}{F}$

$$\Rightarrow$$
 V_m = 5,0 mL

Protocole

- A l'aide d'une pipette jaugée de 5,0 mL munie d'une pro-pipette, prélever un volume de 5,0 mL de la solution de vinaigre.
- Intégrer le volume prélevé dans une fiole jaugée de 50,0 mL.
- Ajouter de l'eau distillé jusqu'à la moitié du volume puis agiter la solution.
- Compléter avec de l'eau distillé jusqu'au trait de jauge puis homogénéiser la solution ainsi obtenue.
- 3. L'équation support du titrage s'écrit :

$$CH_3CO_2H_{(aq)} + HO_{(aq)}^- \rightarrow CH_3CO_{2(aq)}^- + H_2O_{(I)}$$

Synthèse

Notons C_A la concentration en acide éthanoïque du vinaigre dilué dix fois. D'après le titrage effectué :

$$\Rightarrow$$
 C_A.V_A = C_B.V_E

$$\Rightarrow C_{A} = \frac{C_{B}V_{E}}{V_{A}}$$

$$\Rightarrow$$
 C_A = 0,133 mol.L⁻¹

Par suite, notons C la concentration en acide éthanoïque de la solution de vinaigre.

$$\Rightarrow$$
 C = C_A.F

Notons ensuite t le titre massique en acide éthanoïque de la solution de vinaigre.

$$\Rightarrow$$
 $t = \frac{C.M}{\rho}$

⇒ La valeur indiquée sur l'étiquette est valide.